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1. Summary of Progress 

Monitoring and predicting post-fire vegetative recovery. 
At the request of the NRC to support Coastal IFOA management inquiries, in February 2021 we 

delivered preliminary products covering the 2019/20 NSW fire ground including 1-year post-fire 

spectral recovery and predicted years to recovery. We also provided a comprehensive statistical 

summary of the distribution of area (ha) and proportions of boundary units across the spectral 

recovery classes and predicted years to recovery for numerous management zones. The preliminary 

spectral recovery product likely overestimated the absolute recovery values, due to the extreme 

preceding drought conditions coupled with drought-breaking rains from the end of the fire season. 

Nonetheless, the preliminary products served as an adequate relative comparison of values, 

particularly for within a local area. We continue exploration of spectral indices and a robust method 

for defining the pre-fire state for the spectral recovery products and building the volume of training 

data for the predicted years to recovery.   

Historical fire severity derived products 
We completed a proof-of-concept case study of historical fire severity and derived products for the 

Blue Mountains region to support recovery planning and inform the development of fire reporting 

metrics potential indicators of ecological resilience. Data products and statistical analyses of patch-

based metrics were delivered to NPWS senior management in March 2021. The results demonstrate 

the application of patch-based metrics for understanding landscape patterns in unburnt patch 

configuration following a single fire, as well as long unburnt refugia. The study highlights the need to 

interpret the results with a lens of appropriate ecological context, as connectivity between patches 

depends on the species or ecological function of interest. Understanding a composite index, such as 

patch-based metrics, as representing ecological ‘health’ or ‘resilience’ needs to be used in conjunction 

with more specific measures based on known fire responses. Further integration of this research into 

our broader post-fire recovery monitoring research will aim to provide quantitative evidence and 

further understanding of the effect of unburnt canopy patchiness on ecological resilience. 

Radar method exploration 
One of the aims of our project is to evaluate the potential use of radar in post-fire recovery monitoring. 

As a first step, we are assessing the effectiveness of Sentinel 1 (C-band) for mapping fire extent and 

severity, given the extensive training and validation dataset we have developed through the FESM 

project. This will provide good insight into the potential capability of Sentinel 1 for mapping fire 

effects, including post-fire recovery. We have used intensity differencing of pre- and post-fire Sentinel-

1 data to test its performance using a random forest machine learning framework. This provides 

independent testing on quantified known measures of immediate post-fire effects on vegetation. 

Preliminary results indicate the capacity of Sentinel 1 to detect burnt forest with different fire severity 

levels is highly variable.  C-band sensitivity to burn severity may be limited to areas with significant 

canopy structural change, most notably in high-extreme fire severity classes.  We continue to process 

and analyse data covering more case study fires and evaluate the options for use of radar in a post-

fire recovery monitoring workflow.  

TLS field data capture and processing  
The Terrestrial Laser Scanner (TLS) field data campaign has continued to expand with additional 

permanent monitoring sites established. Some delays in the planned schedule have occurred due to 

extensive rainfall and localised flooding restricting fieldwork through late summer and early autumn. 

We now expect this may result in a reduced number of site revisits within the timeframe of this 

project. We continue to make progress on the workflow for processing and analysing the TLS data.  



2. Monitoring and predicting post-fire spectral recovery 

Observational post-fire spectral recovery 
A key component of our research is to develop a method that estimates the proportion of vegetative 

regrowth relative to the unburnt or pre-fire state, with the view to possible integration with the DPIE-

RFS semi-automated fire extent and severity mapping system (FESM). Our research has explored 

candidate indices and methods of defining the pre-fire state, but testing is on-going, particularly for 

quantitative performance assessment against high precision TLS field data. At the request of the NRC 

in early 2021, a preliminary spectral recovery product was rapidly generated for 1-yr post-fire across 

the 2019/20 fire ground in NSW.  

Method 

Based on current literature of the performance of spectral indices from optical sensors for estimating 

post-fire recovery, indices that incorporate short-wave infrared (SWIR) bands are more successful due 

to sensitivity to forest structure, moisture, shadowing, and vegetation density. The Normalised Burn 

Ratio (NBR) index is a ratio of the near infra-red (NIR) to SWIR band and has been demonstrated to 

have greater sensitivity to finer changes in vegetation cover after disturbance than many other 

spectral vegetation indices, particularly over longer recovery timeframes. The preliminary 1-yr post-

fire NBR spectral recovery product is based on the proportion of the post-fire NBR, relative to the pre-

fire NBR.  

 

A prototype scripted workflow for processing the spectral recovery product was written to align the 

post-fire spectral recovery mapping with the FESM severity mapping system. Spectral recovery maps 

were produced on a fire-by-fire basis for all fires mapped by FESM in the 2019/20 fire (fires >10ha). 

The NBR recovery percentage was then reclassified into pixel values from 0 to 10 (see Figure 1). The 

NBR spectral recovery maps for individual fires were mosaicked into a state-wide product and masked 

for burnt area as defined by the FESMv3 2019/20 state-wide mosaic (Dec 2020). A comprehensive 

analysis of summary statistics of area and proportions in each spectral recovery class for numerous 

land management units and landscape regions was also provided, to assist with local and regional 

comparisons and support land management decisions. 

 

Figure 1 a) 1yr post-fire NBR spectral recovery for the NSW 2019/20 fire ground b) a closer view subset of the 
1yr post-fire NBR spectral recovery and c) FESMv3 severity map for the original 2019/20 fire. 

a b c 



Interpretations and Further Research 
Spectral indices are unitless values that do not directly measure quantitative biophysical properties. 
This is one of the major limitations of optical sensors in estimating structural effects of fire. Indices 
measuring the relative sub-pixel fractions of bare, photosynthetic, non-photosynthetic cover, that are 
calibrated with an extensive network of high-quality field data, may provide a useful 2-dimensional 
remote sensing surrogate to estimate the quantity of organic matter consumed by fire and subsequent 
recovery. We will continue to develop and test spectral recovery models with fractional cover indices.  
 
Long standing drought conditions preceded the 2019/20 fire season, resulting in unprecedented 
widespread fuel dryness. The year following the 2019/20 fires has seen widespread drought-breaking 
rains with La Nina conditions. Disentangling spectral recovery from fire as distinct from the mixed 
signals of pre-fire vegetation dryness and post-fire vegetation wetness is a significant challenge for 
remote sensing of post-fire fire recovery. The preliminary 1-year post-fire NBR spectral recovery 
product does not sample the pre-fire state from a representative long-term baseline condition in 
which to estimate the recovered condition against. Therefore, the absolute values of spectral recovery 
in the preliminary product are likely to be an over-estimate and will be most useful for relative 
comparisons across the state.  
 

Modelling predicted recovery rate 
Information about spectral recovery from past fires can be harnessed to ‘predict’ future recovery 

durations, based on knowledge about vegetation type, location, fire severity, etc. Initial exploratory 

analysis of spectral recovery following past fires in NSW indicate substantial differences across 

bioregions. This analysis is based on human interpreted reference samples (~1000 randomly assigned 

1-hectare patches). A preliminary predicted recovery product was generated at the request of the NRC 

across the 2019/20 fire ground in NSW (Figure 2). This will help to identify vulnerable areas where 

management interventions may be most beneficial. A comprehensive analysis of summary statistics 

of area and proportions in each spectral recovery class for numerous land management units and 

landscape regions was also provided, to assist with local and regional comparisons and support land 

management decisions. We continue to build the volume of training data for the predicted years to 

recovery and further testing aims to improve model accuracy.  

 

Figure 2 Predictive model of the number of years to spectral recovery for a) the NSW 2019/20 fire ground and 
b) the southern rangelands. 

a 

b 



3. Historical severity and derived products 

Background 
We have recently been involved in a package of work at the request of the NPWS Deputy Secretary 

and senior management for a rapid assessment of the effects of fire on reserves within the Blue 

Mountains area, with a view to informing appropriate indicators used to measure ’ecological health’. 

Although this case study was not in the original scope of work for this research project, the objectives 

closely align so the time investment was considered mutually beneficial and complementary. Directly 

working with senior land managers to craft fit-for-purpose tools derived from remote sensing of fire 

is a major benefit to the outcomes of our project. 

Existing indicators of effects of fire focus on fire frequency, time since last fire and inter-fire interval 

as a measure of whether the fire regime is appropriate for the ecosystem. The measurement of other 

variables such as severity and patchiness may provide improved understanding of the impacts and 

response of flora, fauna and ecosystems to fire. Unburnt patches within a fire extent may act as 

refugia, facilitating survival and persistence of species. However, patchiness and edge effects may 

have contrasting values depending on the ecological context.  

There is uncertainty about the appropriate scale at which unburnt mosaics should be maintained, and 

this will vary between ecosystems. Furthermore, it is unlikely that the unburnt patch configuration 

resulting from a single fire event will provide robust information about ecological resilience. However, 

long unburnt refugia over 10, 20 and 30 years may provide more significant insights.   

Method 

Fire severity derived products - unburnt refugia  

The first major component of this case study was to map historical severity for the Blue Mountains 

study area. The previously completed work in adapting the sentinel 2 FESM algorithm for application 

on Landsat imagery was the prerequisite that allowed the Blue Mountains archive from 1989 to 2020 

to be mapped. Fire year mosaics were produced by compositing the individual severity maps in each 

fire year. A binary reclassification of the FESM severity classes was made to represent burnt canopy 

and unburnt canopy.  Using the burnt canopy fire year mosaics, time since canopy fire and canopy fire 

frequency products were subsequently generated. 

To provide greater ecological context of unburnt refugia (unburnt canopy in 2019/20 and unburnt 

canopy for >30yrs), vegetation structural formation mapping (Keith formations) were used to divide 

the landscape. Differences between vegetation types impacts fire behaviour, plant responses to fire 

and habitat and resources available for animals. The 3 most common vegetation types in the Blue 

Mountains were used to subset the unburnt canopy mapping: dry sclerophyll, wet sclerophyll and 

heathlands. These images were used for the patch-based landscape pattern analysis. 

FRAGSTATS metrics selected for this case study included class area, patch density, Euclidean nearest 

neighbour distance (mean, standard deviation, and coefficient of variation), and cohesion.  Unburnt 

canopy products (2019/20 and >30yrs) by vegetation types were used as the input images, and were 

clipped by 3 landscape sampling plot sizes; 500m radius, 5km radius and the whole Blue Mountains 

study area. The open-source standalone software FRAGSTATS v4.2.1 was used to build a fragstats 

categorical model (.fca), a class descriptors file (.fcd) and a fragstats batch import script (.fbt). This 

model set up was then executed for each veg type-landscape scale and temporal scale (unburnt 

canopy 2019/20 vs unburnt canopy >30yrs) combination. 



Results 

Landscape pattern analysis of patch metrics 

There was high variation in all patch metrics between vegetation type, spatial (sample plot site) and 

temporal (2019/20 vs >30yrs) scales. In some cases, this is reflective of the relative abundance of the 

vegetation types in the landscape, with dry sclerophyll dominating the area and heathlands 

representing a small proportion. Patch density (n/100ha) was higher for the smaller sampling units, 

for all vegetation types and temporal scales. Spatial scales of investigation may impose limitations on 

some metrics by establishing the lower and upper limits of resolution for the analysis of landscape 

pattern composition and configuration. Thus, caution is advised in comparing values calculated for 

metrics among images with different resolutions. 

Interpretation and further work  

The results so far demonstrate the application of fragmentation statistics for understanding landscape 

patterns in unburnt patch configuration following a single fire, as well as long unburnt refugia across 

several decades of fire impacts. Connectivity between patches depends on the species or ecological 

function of interest. Patches that are considered connected from the perspective of bird dispersal 

might not be so for lizards, seed dispersal or fire spread. While unburnt patches within a fire extent 

may act as refugia, facilitating survival and persistence of species, patch metrics may represent 

contrasting values depending on the ecological context. For example, high patch density may increase 

habitat suitability for some animal species, for example, it may increase their ability to use and/or 

recolonise burnt areas. In contrast, high patch density can increase edge effects such as predation 

rates, depending on the species and ecosystems. Understanding a composite index, such as patch-

based metrics, as representing ecological ‘health’ or ‘resilience’ needs to be used in conjunction with 

more specific measures based on known fire responses. Further integration of this research into our 

broader post-fire recovery monitoring research will aim to provide quantitative evidence and further 

understanding of the effect of unburnt canopy patchiness on ecological resilience. 

  



4. Sensitivity of Sentinel 1 radar to immediate post-fire effects on vegetation 

Background 
One of the aims of our project is to evaluate the potential use of C-band radar in post-fire recovery 

monitoring. As a first step, we are assessing the effectiveness of Sentinel 1 (C-band) for mapping fire 

extent and severity, given the extensive training and validation dataset we have developed through 

the FESM project. This will provide good insight into the potential capability of Sentinel 1 for mapping 

fire effects, including post-fire recovery. We aim to also test radar-based post-fire recovery methods 

against the quantitative field validation data we are currently capturing (See section 6. TLS field data 

capture and processing).   

We’ve used intensity differencing of pre- and post-fire Sentinel 1 data to test its performance using a 

random forest machine learning framework (i.e. the method used by FESM severity mapping).  This 

will provide independent testing on quantified known measures of immediate post-fire effects on 

vegetation.  Through comparisons of independent and combined optical and radar models, we set out 

to answer the following:  

• What is the sensitivity of C-band radar to fire severity  

• Which metrics assist in discriminating fire severity   

• How does a combined optical-radar model perform compared to optical-only and radar-only 
models  

• How do trained and predictive models perform 
 

Method 

Pre- and post-fire intensity differencing  

Sentinel 1 and Sentinel 2 pre- and post-fire image stacks were prepared for 8 study sites (including Sri 

Ivan, White cedars, Wollemi, Holsworthy, Sir Bertram RNP, Tathra, Mt Canobolas and Pilliga) where 

historic fire events were observed (2017-2018).  Sentinel 1 data were orthorectified and 

radiometrically calibrated to gamma0 using ESA’s SNAP v7.0 software.  Pre- and post-fire images were 

differenced and clipped to the extent of each site.  Dr Michael Chang (Macquarie University) assisted 

in the analysis.   

Independent and combined fire severity models  

Using a cross-validation framework with independent training and validation data, we have 

systematically compared multiple indices derived from optical, radar and secondary texture indices 

across different pixel window sizes (Table 1).  We also compared the integration of radar and optical 

data in combined models.  Training data for unburnt and burnt areas (5 severity classes) were 

identified on ADS imagery.  Site trained models (referred to as 'trained' from hereafter) are compared 

against 'predictive' models (using data from all other case study fires).    

Table 1  Matrix of variables used in the comparison of models.  The base index, texture statistic and pixel 
window size were combined to produce the input indices. 

Sensor type Base index Texture statistic Pixel window size 

reflectance dNBR Mean  5 

reflectance RdNBR Variance  7 

reflectance SWIR dNBR2 Contrast  11 

reflectance SWIR RdNBR2 2nd moment   

fractional cover Total cover  Homogeneity   

fractional cover Bare cover Dissimilarity   

radar Radar - VV Correlation   

radar Radar - VH   



Balanced accuracy statistics were generated, as well as overall accuracy and Kappa values, which 

determines the statistical agreement between the model and the validation data and allows 

comparative performance between models.  For each model and the predictive model including all 

input indices, we calculated the mean decrease in Gini (Gini impurity criterion), which measures the 

similarity of a given element with respect to the rest of the classes and is used to find the best split 

selection at each node of the random forest decision tree.  The mean decrease in Gini was ordered 

from highest to lowest, to rank the input indices according to variable importance. 

Results  
Here we present a subset of the preliminary results, to visually demonstrate the comparative mapping 

for the Wollemi and Sir Bertram RNP fires.   

Wollemi 

Wollemi is composed of mostly medium open eucalypt forest and was affected by a fire event 

between 28/1 - 15/2 2018.  The darkest areas in the pre- minus post-fire images mostly fall in areas of 

layover/shadow where the backscatter is considered unreliable (Figure 3a. and Figure 4a).  Brighter 

areas are where the post-fire backscatter is lower than the pre-fire backscatter and are likely burnt.  

The purple tones in the RGB colour composite represent areas where the VV backscatter has increased 

post-fire, suggesting more severe burning in these areas.   

  

Figure 3 a) VV pre- minus post-fire difference and b) VH pre- minus post- fire difference 

  

Figure 4 a) Post-fire VV:VH:VV RGB colour composite with layover/shadow mask overlain (black). The 
layover/shadow mask shows areas of unreliable backscatter in steep terrain,  and  b) VV pre- minus post-fire 
difference with fire severity training polygons overlain 

There is high variability in the co-polarized VV and cross-polarized VH backscatter response in both 

burnt and unburnt forests at Wollemi.  VV backscatter increases with increasing fire severity. The 

mean pre- minus post-fire VV difference shows negative values for moderate-high severity classes 

(Figure 5), and the majority of ROIs in classes 3 - 5 show negative mean VV difference.  Likely there 

are some areas with enough canopy consumption that the radar signal is interacting with exposed 

trunks or the ground surface, thereby increasing the VV backscatter.     

a b 

a b 



VH backscatter decreases with increasing fire severity.  The mean pre- minus post-fire VH difference 

shows positive values for all severity classes (Figure 5).  The post-fire VH backscatter is lower, 

particularly in high-extreme severity classes, as there are less scatterers in the canopy.   

 

Figure 5  Scatter plots of mean pre- minus post-fire for VV (red triangle) and VH (green diamond) intensity 
difference for ROIs in unburnt and fire severity classes 2 - 5 at Wollemi.  Standard deviations shown in grey 
bars.   

Trained random forest (RF) models (i.e. includes severity training data for the target fire) outperform 

predictive models (i.e. excludes severity training data for the target fire, and predicts using all other 

fires in the training dataset; Figure 4).  The radar-only trained RF model exhibits the most sensitivity 

to the high severity class where the most structural change in the canopy is observed.     

 

Figure 6 a) Optical-only trained RF model result and b) Radar-only trained RF model result  

Sir Bertram RNP 

The site in the Royal NP comprises mostly medium eucalypt woodland, scrub, heath and patches of 

rainforest.  The area was affected by a fire event between 20/1 – 25/1 2018.  Brighter areas in the pre- 

minus post-fire VH image have lower post-fire backscatter and were burnt (Figure 7).  Darker areas in 

the pre- minus post-fire VV image are where the VV backscatter has increased post-fire.  These areas 

were more severely burnt and appear in purple tones in the RGB colour composite.  

   

Figure 7 a) VV pre- minus post-fire difference  and b) VH pre- minus post- fire difference  



  

Figure 8 a) Post-fire VV:VH:VV RGB colour composite with layover/shadow mask overlain (black)  and b) VV 
pre- minus post-fire difference with fire severity training polygons overlain   

The mean pre- minus post-fire VV difference shows negative values for unburnt-low and extreme 

classes, and in Figure 8, the majority of ROIs in these classes show negative mean VV pre- minus post-

fire difference.  Many of the ROIs in inland heath and tall scrub were extremely burnt and an increase 

in VV backscatter was observed in these areas indicative of greater surface scattering.  The mean pre- 

minus post-fire VH difference shows positive values for high-extreme severity classes (Figure 9).  ROIs 

in centrally located forest patches exhibited lower post-fire VH backscatter.  On the coast, a decrease 

in VH backscatter was observed in heath while the response at VV was mixed.  ROIs in these areas 

corresponded with extreme fire severity.   

 

Figure 9  Scatter plots of mean pre- minus post-fire VV (red triangle) and VH (green diamond) intensity 
difference for ROIs in unburnt and fire severity classes 2 - 5 at RNP.  Standard deviations shown in grey bars.   

Trained RF models typically outperformed the predictive models for mapping fire severity.  The 

predictive models appeared to over-predict the high severity class.  Trained radar-only and optical-

only RF models are comparable for the extreme severity class, however the moderate severity class is 

better predicted in the optical-only model.   

 

Figure 10 a) Optical-only trained RF model result and b) Radar-only trained RF model result 

 

 



Initial findings and further work  
From the 2 out of 8 sites that have been processed, the following observations are made:  

• High variability in VV and VH backscattering is observed in unburnt and burnt forests on 
account of radar speckle and the range of fire severity classes encountered. 

• The capacity of C-band SAR to detect burnt forest with different fire severity levels is highly 
variable.  C-band sensitivity to burn severity may be limited to areas with significant canopy 
structural change, i.e., where leaves and branches are partially or wholly consumed, most 
notably in high-extreme severity classes.  Changes in canopy structure directly influence the 
C-band signal, with changes in volume and multi-path volume scattering mechanisms.   

• VH backscatter shows increasing sensitivity to fire severity.  A decrease in post-fire VH 
backscatter is observed in high-extreme severity classes, indicative of the loss of scatterers in 
the canopy.   

• With the loss of canopy volume in burnt forest, there is potential for the radar signal to 
interact with the ground surface, resulting in elevated VV backscatter.  

• Trained RF models have high overall capacity for predicting fire severity at that site, however, 
perform poorly outside the target area.    
  

The remaining 6 sites will be processed and analysed.    
 

  



5. Sensitivity of Sentinel 1 radar to longer-term post-fire vegetation recovery  

Background 
Part of our ongoing research is assessing the application of Sentinel 1 for post-fire recovery mapping.  

We aim to evaluate the sensitivity of a radar time-series approach in detecting post-fire recovery for 

different fire severity classes and vegetation cover types. 

Active sensors such as synthetic aperture radar (SAR) are more sensitive to forest biomass and 

structural properties compared to passive instrument data.  SAR data are also not obstructed by cloud 

cover or influenced by solar angle.  However, the present major limitation for the application for post-

fire recovery monitoring of SAR data is the spatial coverage and historical data availability to assess 

accuracy.  Topography and rainfall can also strongly influence the radar backscattering response and 

so understanding the local environmental context is important when interpreting SAR imagery.   

Method 
Monthly time-series of Sentinel-1 data were processed for 8 sites to investigate post-fire recovery 

response.  The sites represent areas affected by contemporary (2019/20) and historic fire events 

(2017/18):   

• 2-year monthly time-series (2019-2020) of Sentinel-1 were processed for Busbys and Mt 

Nardi, Shark ck, Bees Nest, Kingsgate and Clouds Creek, Bills crossing and Kaputar.   

• 4-year monthly time-series (2017-2020) were processed for the Pilliga, Mt Canobolas and 

Putty rd.  

 

Sentinel 1 data were co-registered, orthorectified and radiometrically calibrated to gamma0 (db) using 

ESA SNAP v8.0.  Batch processing was implemented on DPIE’s high performance computing system 

(SDC).  The mean and standard deviation of the backscatter was extracted for regions of interest (ROIs) 

identified on ADS and/or FESM mapped severity classes.   

Results 
Initial findings from the time-series analysis of C-band backscatter and mapped fire severity classes 

for Mt Canobolas and Kaputar are presented here.  

Mt Canobolas  

The fire event at Mt Canobolas occurred between February 10 - 16, 2018 and mostly affected areas of 

eucalypt woodland.  Some small patches of surrounding softwood plantation and non-forest areas 

were burnt as well. Visual interpretation of timeseries imagery indicated burnt areas show lower VV 

and VH backscatter compared to the pre-fire scene. Subsequent increase in brightness in these areas 

by the end of the time-series is indicative of recovery of the vegetation.  Unburnt areas show limited 

change in brightness.     

Lower VH backscatter is observed in burnt forest as there is less vegetative material to interact with 

in the canopy.  A decrease in VH backscatter is observed at Mt Canobolas following the fire event.  A 

gradual increase in VH backscatter is observed thereafter as the canopy recovers.  The post-fire VH 

backscatter decreases as fire severity increases. In more severely burnt forest, there is less opportunity 

for volume scattering in the canopy and hence lower VH backscatter.  Recovery of the VH signal is 

proportionally greater in the high-extreme severity classes than the low-moderate severity classes 

(Figure 11).  VV backscatter also decreases post-fire but the decrease is of a lesser magnitude than at 

VH.  This suggests that although the canopy was burnt, it was not burnt extensively to the point where 

the trunks or ground surface were exposed to the radar signal.   



C-band VH is sensitive to grass volume and burnt grassland exhibits lower VH and slightly higher VV 

backscatter compared to its pre-fire state (Figure 11).  Unburnt areas exhibit a decrease in VH 

backscatter and relatively stable VV backscatter.  The 2 peaks in VV and VH backscatter observed on 

25/2/2018 and 24/10/2020 are likely due to rainfall in the days prior to imaging (Figure 11).   

 

 

Figure 11.  Time-series of mean VH (top) and VV (bottom) backscatter extracted from ROIs and averaged by 
severity class.   

Short-term regrowth is indicated by the amount of backscatter increase in the first year after a fire 

event, while longer-term recovery is indicated by the difference in backscatter with respect to pre-fire 

levels.  Positive changes in VH backscatter were observed 1 year after the fire event.  The magnitude 

of change was greatest in the high-extreme severity class.  It is possible that in more severely burnt 

areas, new scatterers are being generated at a faster pace than in areas burnt at lower severity.   Over 

the long-term, the magnitude of recovery is greatest in the high-extreme severity classes. 

Kaputar 

The fire in Kaputar occurred between 17/10 - 29/11 2019 and mostly affected areas of eucalypt 

woodland.  Burnt forest exhibits lower VH and mixed VV backscatter compared to the pre-fire image.  

Some of the burnt areas have recovered as indicated by the increase in brightness at the time-series 

end.  Unburnt forest shows limited change in backscatter over the time period.   

A decrease in VH backscatter was observed post-fire in high-extreme fire severity classes (Figure 12).  

The loss of vegetative material in the canopy means there are less opportunities for volume scattering 

at VH.  The VH backscatter in these classes increased to pre-fire levels by around 6 months.  Post-fire 

VV backscatter did not change significantly, however a gradual increase in VV was observed for all 

severity classes in the first 6 months post-fire.  The backscatter response from unburnt areas was 

reasonably stable across the timeframe.         



 

 

Figure 12.  Time-series of mean VH (top) and VV (bottom) backscatter extracted from ROIs and averaged by 
severity class.   

Further work  

Analysis of monthly time-series of Sentinel 1 data over historic and contemporary fire affected sites is 

ongoing.  Radar indices and proportionate recovery to pre-fire levels will be investigated.  The 

potential application of C-band radar in post-fire recovery monitoring will be evaluated in the process.      

 

 

 

  



6. TLS Field Data Capture and Processing 

Long-term monitoring survey plots 
We have continued setting up permanent TLS post-fire recovery monitoring sites (see Table 2). Several 

more sites have been established at Mt Kaputar and in the Pilliga region. Our proposed sites in the 

Shark Creek fire in Yuragir NP have been located with site reconnaissance but fieldwork was 

postponed due to rain. Similarly, fieldwork for the Bees Nest fire in Guy Fawkes River NP had been 

scheduled a couple of times but was postponed due to a persistently rainy conditions over summer 

and early autumn. Additional single-visit sites with longer time since fire may also be opportunistically 

captured during our site re-visit field trips. 

Table 2 Permanent TLS post-fire recovery monitoring site location details 

Reference Fire  Fire year Location Site Name Project Name Fire Severity 

Liberation Trail 2019/20 
Clouds Creek 

SF 

Cloudscreek1 200923_122611 unburnt/low 

Cloudscreek2 200923_154324 high/extreme 

Cloudscreek3 200924_102321 unburnt/low 

Cloudscreek4 200924_130236 high/extreme 

Mt Kaputar 2019/20 
Mt Kaputar 

NP 

Kaputar1 201103_144650 unburnt/low 

Kaputar2 201105_091053 high/extreme 

Dipper Rd 2017/18 Pilliga 
Pilliga1 201104_092055 high/extreme 

Pilliga2 201104_120320 unburnt/low 

Whirlybrook 
Trail 

2014/15 Pilliga 
Pilliga3 201106_112412 unburnt/low 

Pilliga4 201106_083738 high/extreme 

Redbank Nth 2012/13 Pilliga 
Pilliga5 201109_123446 high/extreme 

Pilliga6 201110_101247 unburnt/low 

Dipper Rd 2017/18 Pilliga 
Pilliga11 201112_123013 unburnt/low 

Pilliga12 201113_092733 high/extreme 

Shark Creek 2019/20 Yuragir NP 
3 TBC unburnt/low 

3 TBC high/extreme 

Bees Nest 2019/20 
Guy Fawkes 

River NP 

4 TBC unburnt/low 

4 TBC high/extreme 

 

Automated data processing workflows 
Significant investment of our time in the past few months has been focused on technical development 

and training of field protocols to allow for high precision repeat site surveys, as well as data 

management and automating workflows for file naming conventions, data storage, pre- and post-

processing, and analysis. We have leveraged significant in-house expertise through our JRSRP research 

partner Dr Nick Goodwin, to implement much of the previously scripted workflows developed in QLD 

(Department of Environment and Science) through the JRSRP (Joint Remote Sensing Research 

Program). Ongoing development and testing are still taking place to further refine processing 

efficiencies and data analysis output.  

 

  



7. Next tasks  
The following section summarises the key tasks we will be focusing on over the next 8 months, before 

the final report due in November 2021. 

Historical Fire Severity and post-fire recovery decision support tools 

• Continue working with NPWS fire managers on application of results from the Blue Mountains 

Case Study  

• Investigate quantitative evidence and further understanding of the effect of unburnt canopy 

patchiness on ecological resilience. 

• Secure resourcing to allow expanding historical fire severity mapping for other case study 

regions in NSW 

Optical sensor analysis  

• Further explore candidate spectral and fractional cover indices across a wider range of 

vegetation, climate and topographic conditions, 

• Further investigate rigorous methods for defining the pre-fire state for relative comparison or 

the post-fire state, and explore application of local unburnt reference sites. 

• Validation of indices against quantitative TLS field data  

Radar sensor analysis  

• Further co-registration and processing of monthly sentinel-1 time-series and exploration of 

time-series metrics for post-fire recovery 

• Continue comparative analysis of radar-only, optical-only and combined approaches 

TLS field data  

• Continue setting up permanent TLS monitoring sites 

• Refine post-processing data analysis scripted workflow 

• Conduct preliminary analysis of TLS field data comparisons to satellite-derived relative 

recovery products. 

• Secure resourcing to allow expanding TLS monitoring site network and on-going site revisits 

Predictive post-fire recovery risk modelling 

• Continue building the reference sample database 

• Generate spatial data products of predicted recovery rates over the 2019-2020 fire extent 

 

 


